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Mitochondria are evolutionarily derived from alphapro-
teobacteria that evolved in symbiosis within eukaryotic 
cells1. Although most alphaproteobacterial genes were 

transferred to the eukaryotic nucleus, mitochondria retained their 
genome to translate the remaining protein-coding genes within 
their DNA. This requires complex coordination of the transcription 
and translation from two genomes, and the import and process-
ing of proteins into the mitochondria in an ever-changing cellular 
milieu2,3. Disruption of these finely controlled processes has been 
shown to impair cellular homeostasis. To cope with this downside of 
endosymbiosis, mitochondria have evolved multiple stress-response 
pathways. The mitochondrial stress-response (MSR) network con-
tributes to the reconstitution of cellular homeostasis by preventing 
mitochondrial proteotoxicity and by redistributing and remov-
ing irreversibly damaged elements of the mitochondria4. In recent 
years, we have gained considerable insights into why a decline in the 
robustness of these MSR pathways contributes to cellular damage 
and organismal deterioration. This is underlined by our emerging 
understanding of how different types of mitochondrial defects are 
co-regulated and interact across cellular and systemic processes.

Here, we describe the pleiotropic effects of mitochondrial dys-
function in aging. We outline the major mitochondrial stress path-
ways, how their failure is interconnected with the expansion of 
mitochondrial DNA mutations and deregulated metabolism, and 
how this affects cellular and organismal homeostasis. We further-
more provide an integrated map of how combined mitochondrial 
defects impact several features of aging, suggesting conserved links 
that could potentially be harnessed to slow the aging process. We 
refer readers to other comprehensive reviews on topics not covered 
in depth here, such as cellular senescence, stem cell function, and 
reactive oxygen species (ROS)5–7.

Mitochondrial stress responses in aging and longevity
Mitochondrial unfolded protein response. Appropriate handling 
and folding of proteins are essential, especially in mitochondria, 
whose proteome is encoded in both the nuclear and mitochon-
drial genomes. Mitochondrial protein homeostasis is ensured by an 
elaborate protein quality-control network composed of molecular 
chaperones and proteases8 governed by the mitochondrial unfolded 
protein response (UPRmt) (Fig. 1). Upon mitochondrial proteotoxic 
stress, the UPRmt induces the expression of chaperones, proteases, and 
other stress-response genes, mediated by activating transcriptional 
factor associated with stress-1 (ATFS-1) in Caenorhabditis elegans,  

and activating transcription factor 4 (ATF4) along with ATF5 
and DNA damage inducible transcript 3 (DDIT3, also known as 
CHOP) in mammals, to restore mitochondrial function and adapt 
to stress9–12. Several conditions that interfere with mitochondrial 
proteostasis, such as an increased load of unassembled, damaged, or 
unfolded proteins, play a substantial part in UPRmt activation, with 
important implications in aging and longevity.

Disruption of most of the electron transport chain (ETC) sub-
units extends the lifespan in C. elegans, yeast, flies, and mice13–18. It 
is well established that activation of the MSR is a critical component 
of mitochondrial-stress-induced longevity. In worms, knockdown 
of oxidative phosphorylation (OXPHOS) complexes I, III, IV, and 
V, all encoded in both mitochondrial DNA (mtDNA) and nuclear 
DNA (nDNA), triggers the UPRmt and extends lifespan18, while dis-
ruption of complex II, which is encoded only by nDNA, does not 
affect longevity19. Consistent with these results, complex-IV-defi-
cient mice also show activation of the UPRmt and have a prolonged 
lifespan14,20. These data suggest that a mismatch between mtDNA- 
and nDNA-encoded ETC subunits, resulting in unassembled ETC 
components and the subsequent mitonuclear protein imbalance, is 
sufficient to drive the UPRmt and lifespan extension in worms and 
mammals. In agreement, the reduced expression of Mrps5, which 
encodes a mitochondrial ribosomal protein that regulates the trans-
lation of mtDNA-encoded ETC genes, induces a mitonuclear imbal-
ance resulting in activation of the UPRmt, which correlates with an 
increased lifespan in the BXD mouse genetic reference population 
(GRP)21. In C. elegans, mrps-5 RNA interference (RNAi) increased the 
lifespan by more than 50%, highlighting an evolutionarily conserved 
mechanism linking the UPRmt to longevity21. In addition, pharma-
cologically inhibiting mitochondrial translation by using antibiotics 
that inhibit bacterial, and, hence, mitochondrial translation, such 
as doxycycline or chloramphenicol, induces the UPRmt and extends 
the health span and lifespan across kingdoms of life, from animals  
(C. elegans)21 to plants (Arabidopsis thaliana)22,23. Interestingly, as 
shown in yeast, worms, and mammals, such adaptive changes in 
mitochondrial translation can also affect cytosolic translation24–26, 
suggesting that cross-compartment synchronization is essential to 
maintain protein homeostasis during mitochondrial stress.

Mitonuclear protein imbalance also contributes to the lifespan 
extension seen upon mitochondrial biogenesis. An increased pro-
tein-folding workload in the mitochondria can be perceived as pro-
teostatic stress, resulting in activation of the UPRmt (ref. 21). This has 
been demonstrated by the lifespan-extending effect of resveratrol,  
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a well-known inducer of mitochondrial biogenesis, which also trig-
gers the UPRmt in worms21. Likewise, genetic or pharmacological  
restoration of nicotinamide adenine dinucleotide (NAD+) in  
C. elegans induces mitochondrial biogenesis and promotes lon-
gevity via induction of mitonuclear imbalance and UPRmt (ref. 27). 
These findings translate to mammals, as restoring NAD+ levels by 
nicotinamide riboside (NR) administration in mice aged 24 months 
induces the UPRmt and extends the lifespan28. However, when treat-
ment with NAD+ boosters was started in mice at 8 months of age, 
they were reported not to increase the lifespan29.

There are specific spatiotemporal requirements for UPRmt acti-
vation and longevity. In C. elegans, cco-1 and mrps-5 RNAi21,30 and 
RNAi targeting other respiratory chain components18, as well as dox-
ycycline treatment, result in activation of the UPRmt and promote 
longevity only when the perturbation occurs early in life, before the 
L3/L4 larval stage. This suggests the existence of a surveillance sys-
tem that monitors mitochondrial activity early in life and establishes 
the rate of the aging process throughout adulthood through epigen-
etic modulation (Box 1). Moreover, the longevity effect of UPRmt 

activation has been shown to be tissue-specific, as ETC disruption 
in neurons and intestine, but not in muscle, increases longevity in 
an UPRmt-dependent manner30. UPRmt activation by mitochondrial 
stress can also signal in a cell-nonautonomous manner to inform 
distant tissues of emanating mitochondrial stress. In worms, ETC 
inhibition or expression of toxic polyglutamine (polyQ) protein 
in neurons activates the UPRmt in the intestine, suggesting the 
existence of extracellular signals that inform the whole organism 
of stress and prepare against it30–32. Accordingly, the Wnt/EGL-20 
ligand of the Frizzled receptor is a signaling molecule secreted by 
neurons upon mitochondrial stress, which triggers the UPRmt in 
peripheral tissues in the same organism32 and across generations, 
conferring stress resistance and longevity in the descendants33. 
Interestingly, this transgenerational stress-protective inheritance 
by Wnt signaling is caused by increased mtDNA in the germline 
leading to a mitonuclear protein imbalance and UPRmt (ref. 33). 
Likewise, the increased lifespan observed in Drosophila upon mild 
mitochondrial disruption requires inter-organ cross-talk involv-
ing UPRmt and insulin-like growth factor-binding protein 7, which  
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Fig. 1 | Main activation mechanisms of the UPRmt in C. elegans and mammals. Stressors that induce proteotoxicity in the mitochondria such as 
accumulation of unassembled, unfolded, and damaged proteins can trigger the UPRmt. The activation of the UPRmt in C. elegans involves the digestion 
of unfolded or unassembled mitochondrial proteins by the mitochondrial matrix protease CLPP-1 and the transport of the fragmented peptides to the 
cytoplasm by HAF-1. Cytosolic accumulation of these mitochondrial peptides is at the heart of UPRmt activation. ATFS-1 is a transcription factor that, under 
basal conditions, localizes to the mitochondria, where it is constantly degraded by the Lon protease 1 (LONP-1). During mitochondrial stress, mitochondrial 
protein import is limited by the cytosolic accumulation of mitochondrial peptides. ATFS-1 then can shuttle to the nucleus12, where, in cooperation with 
other co-factors including DVE-1 and UBL-5, as well as epigenetic modulators including JMJDs and CBP-1 (refs. 247,248), it orchestrates the expression of 
a broad set of genes involved in mitochondrial quality control and metabolism12,252–255. In mammals, several types of mitochondrial perturbations (such 
as oxidative or proteotoxic stress), trigger the ISR through the phosphorylation of translation initiation factor eIF2α, which shuts down global translation 
and favors the cap-independent translation of the ATF4 transcription factor, leading to the expression of UPRmt and cytoprotective genes9,49. In addition to 
ATF4, at least two other transcription factors, ATF5 and CHOP, and several epigenetic modulators247,248 are involved in UPRmt activation10,11. The attenuation 
of general protein translation, together with the transcriptional induction of proteostasis genes, such as those encoding chaperones and proteases, thus 
antagonize cellular proteotoxicity.
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systemically antagonizes insulin signaling34. In mice, growth dif-
ferentiation factor 15 (GDF15) and fibroblast growth factor 21 
(FGF21) were identified as UPRmt-associated hormones promoting 
metabolic benefits, such as improved insulin sensitivity and pro-
tection against hepatic steatosis35,36 as well as increased lifespan37,38. 
As these molecules are secreted during mitochondrial stress, 
they have often been termed ‘mitokines’; however, as they are not 
directly released by mitochondria, the term ‘metabokines’ may be  
more appropriate.

In contrast to mild and acute (time-restricted) mitochondrial 
stress, which improves organismal homeostasis, chronic OXPHOS 
dysfunction is often detrimental. For example, several mouse mod-
els with mitochondrial defects have a reduced lifespan39–41, and 
most of the human diseases associated with OXPHOS dysfunc-
tion are typified by protracted defects and hence are deleterious42,43. 
Circulating levels of FGF21 and GDF15 are substantially increased 

in mouse models of mitochondrial dysfunction44,45 and in human 
mitochondrial disorders45,46 and aging47, which might represent an 
attempt of the organism to cope with the sustained stress. Moreover, 
the UPRmt is, on the one hand, strongly induced in worm and mouse 
models of mtDNA deletion44,48,49, whereas, on the other hand, it 
seems to be required for the propagation of mtDNA deletion in 
worms48. Collectively, these results suggest that prolonged activa-
tion of mitochondrial stress can be harmful, whereas precise, mild 
mitochondrial stress exerts a beneficial adaptive effect on organis-
mal aging. This mitohormetic effect of the UPRmt is in line with its 
temporal specificity, in which the UPRmt needs to be inflicted in the 
larval stages to extend worm lifespan.

The UPRmt pathway also modulates stem cell function in aging. 
In muscle stem cells of aged mice, restoring NAD+ levels with NR 
activates the SIRT1-dependent UPRmt, improving mitochondrial 
metabolism and attenuating senescence linked to increased lifes-
pan28. Similarly, increasing NAD+ levels by overexpressing NAMPT, 
the rate-limiting NAD+ salvage enzyme, ameliorates cell senescence 
in aged mesenchymal stem cells50. The effects of NAD+-induced 
UPRmt signaling have also been shown to benefit muscular dystro-
phies, as it not only prevents MuSC senescence28, but also attenuates 
skeletal muscle and heart deterioration in mouse models of muscle 
dystrophy51. Also, SIRT7, which is downregulated upon aging and 
controls the expression of several mitochondrial proteins in mice52, 
improves the regenerative capacity of aged hematopoietic stem cells 
through a mechanism involving the activation of the UPRmt (ref. 
53). Thus, the UPRmt may be essential to maintain stem cell function 
during aging by preventing senescence.

Defects in how mitochondria sense and respond to stress are 
crucial for initiating organismal decline in aging. The UPRmt 
emerged as an essential regulator of aging and longevity by synchro-
nizing mitochondrial and nuclear genomes at the proteome level 
to maintain proper mitochondrial function upon stress. Suggestive 
of potential relevance in mammals, the UPRmt network is active 
in mouse and human populations across multiple tissues54 and is 
deregulated in several human age-related diseases, such as sarcope-
nia55 and Alzheimer’s disease56,57.

Mitochondrial membrane dynamics. Mitochondria are dynamic 
organelles; they can be found as isolated organelles, fused in large 
networks, and even unequally distributed in the cytosol by orga-
nized mitochondrial transport and positioning58. Mitochondrial 
fusion and fission, termed mitochondrial membrane dynamics, are 
essential components of the MSR. Through dilution and segregation 
of damaged organelles, cells ensure homeostasis and survival upon 
stress59,60. Thus, cellular and organismal health relies on tight regu-
lation of mitochondrial fission and fusion, and disruption in any of 
these pathways is linked to aging and several age-related diseases59.

In mammals, fusion of the mitochondria is mediated by the 
GTPases mitofusin 1 (MFN1) and MFN2, which merge the outer 
mitochondrial membrane (OMM), and by optic atrophy 1 (OPA1), 
responsible for merging the inner mitochondrial membrane 
(IMM). Mitochondrial fission is predominantly orchestrated by the 
dynamin-related protein 1 (DRP1) GTPase in coordination with 
other OMM-associated receptors, such as mitochondrial fission 
factor (MFF) and mitochondrial fission 1 protein (FIS1)61,62. Both 
fission and fusion seem to facilitate the segregation and removal of 
dysfunctional mitochondria63. Moreover, DRP1 mediates two dis-
tinct types of mitochondrial fission: division at the midzone results 
in mitochondrial proliferation, whereas division in the periphery 
enables damaged material to be destined for mitophagy64 (Fig. 2a).

The link between mitochondrial fission and fusion in aging was 
initially observed in lower organisms. In two fungal aging models, 
reducing mitochondrial fission by Dnm1p (homolog of mammalian 
drp-1) deletion enhances lifespan65. In worms, fragmentation of the 
mitochondrial network and swollen mitochondria are observed 

Box 1 | Epigenetic modulations in response to mitochondrial 
stress

Epigenetic mechanisms help to explain how environmental 
cues impinge on the regulation of the aging process244. Increas-
ing evidence suggests that conserved mitochondria-to-nucleus 
stress-signaling pathways regulate aging through epigenetic 
modulation of nuclear gene expression. In yeast, mitochondrial 
stress induces longevity through trimethylation of H3 at K36 and 
requires the H3K36 demethylase Rph1 (ref. 245). In C. elegans, 
the histone methyltransferase MET-2 and its nuclear cofactor 
LIN-65 cooperate to induce general chromatin compaction and 
transcriptional silencing246. Activation of specific UPRmt genes 
then depends on the removal of transcription-repressive his-
tone-methylation marks (for example, H3 trimethylated at K27 
(H3K27Me3)) by the H3K27 demethylases JMJD-3.1 and JMJD-
1.2 (or mammalian KDM6B and PHF8) and their subsequent re-
placement by transcriptionally active acetylation marks (for ex-
ample, H3 acetylated at K27) by the acetyltransferase CBP-1 (or 
mammalian CBP and p300). This relays the mitochondrial stress 
signal, resulting in the selective transcriptional induction of di-
verse UPRmt genes, mediated by the transcription factors ATFS-1 
(or mammalian ATF4, ATF5 and CHOP) and DVE-1 (refs. 247,248) 
(Fig. 1). Consistently, the H3K9 methyltransferase SET-6–BAZ-
2 complex accelerates behavioral deterioration in C. elegans by 
repressing the expression of UPRmt genes, thereby promoting the 
aging process249. Expression of KDM6B and PHF8, and of CBP 
and p300, also correlates with the expression of UPRmt genes 
and extended lifespan in the mouse genetic reference popula-
tions, supporting a strong link between epigenetic remodeling 
and life extension247,248. How these epigenetic modulators sense 
mitochondrial stress remains largely unexplored. One possibil-
ity is that mitochondrial perturbations could alter the nuclear 
epigenome through mitochondrial-derived metabolites221 (see 
‘Tricarboxylic acid cycle intermediates’). For instance, the level 
of mitochondrial-derived acetyl-CoA was found to be decreased 
upon mitochondrial perturbations, which can be sensed by the 
histone deacetylase complex (NuRD). The subsequent nuclear 
accumulation of the NuRD complex and DVE-1 could then 
reduce histone acetylation, reorganize chromatin structure, in-
duce the UPRmt, and enhance lifespan229,250. Likewise, the level 
of histone H4 acetylated at K5 decreases in normal aged worms 
and the short-lived cbp-1 loss-of-function worms, which can be 
reversed by sodium butyrate, an HDAC inhibitor251. The MSR 
is thus controlled by epigenetic modulations to allow transcrip-
tional regulation during aging and longevity.
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with aging21,66,67, and diverse longevity pathways are associated 
with increased mitochondrial fusion68. Accordingly, inhibition of 
mitochondrial fusion abrogates the lifespan extension in long-lived 
mutant worms66,68. Aging manifests itself differently in distinct tis-
sues, as in the case of germline cells, which connect generations and 
are essentially immortal. In worms, these cells avoid transmitting 
damage to the next generation by an invigoration of proteostasis, 
requiring a switch from fragmented to an elongated, fused mito-
chondrial network69.

However, mitochondrial fusion is not always analogous to lifes-
pan extension. In Drosophila, reduction in mitofusion levels caused 
by overexpression of parkin, an E3 ubiquitin ligase involved in the 
ubiquitin–proteasome system and mitophagy, attenuates mito-
chondrial fusion and triggers mitochondrial fission, leading to an 
increase in multiple markers of mitochondrial activity and lifespan 
extension70. Alternatively, triggering mitochondrial fission through 
upregulation of Drp1 in the midlife of flies preserves mitochondrial 
respiratory function and prolongs lifespan71. Moreover, reducing 
mitochondrial translation by mrps-5 RNAi in C. elegans extends the 

lifespan while triggering mitochondrial fragmentation21. In this set-
ting, altering fission or fusion synergizes with reduced mitochon-
drial translation to prolong the worm’s lifespan72. Simultaneous 
ablation of both mitochondrial fission and fusion produces oppos-
ing phenotypes in yeast and C. elegans. In yeast, this double ablation 
shortens the lifespan73, whereas in C. elegans, it extends the lifespan 
by increasing the homeostasis, fatty acid oxidation, and peroxisomal 
function in the mitochondrial network74.

In mice, both fission and fusion are impaired with age. Aged 
mice demonstrate reduced DRP1 activity and alterations in mito-
chondrial morphology in several tissues, including skeletal muscle, 
neurons, and oocytes75,76. Interestingly, both muscle-specific DRP1 
overexpression or DRP1 knockdown in 18-month-old mice causes 
muscle atrophy77. Recently, it has been shown that the RNA-binding 
protein pumilio 2 (PUM2) increases with age in worms, mice, and 
humans67. PUM2 prevents Mff translation, suggesting a potential 
mechanism by which mitochondrial fission is impaired in aging67. 
Finally, ablation of both DRP1-mediated fission and MFN-mediated 
fusion in mice accelerates mitochondrial senescence in the heart78. 
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Fig. 2 | Mitochondrial membrane dynamics and mitophagy. a, In mammals, fusion of mitochondria is regulated by two mitofusins (MFN1 and MFN2), 
proteins of the dynamin-related family of large GTPases, located in the OMM, and OPA1, located at the IMM. Fusion initiates with the docking of two MFN1 
proteins in the mitochondria, inducing conformational changes that drive GTP hydrolysis with subsequent fusion of the mitochondrial OMMs. At the IMM, 
unprocessed OPA1, known as long OPA1 (L-OPA1), is cleaved by the peptidases OMA1 and YME1L to form the short form of OPA1 (S-OPA1), which, in 
association with cardiolipin, facilitates the fusion of the adjacent IMM following OPA1-dependent GTP hydrolysis. Fission is predominantly orchestrated 
by the dynamin-related protein 1 (DRP1). When dephosphorylated by calcineurin at Ser637, DRP1 translocates from the cytosol to the mitochondrial 
surface. There, DRP1 binds to its OMM receptors mitochondrial fission factor (MFF), mitochondrial dynamics protein of 49 kDa (MID49), MID51, and 
mitochondrial fission 1 protein (FIS1). DRP1 then oligomerizes and induces GTP-hydrolysis-membrane constriction. DRP1 also mediates mitochondrial 
peripheral fission, enabling damaged material to be destined for mitophagy. b, PINK1, a mitochondrial serine/threonine-protein kinase, senses impaired 
mitochondria and signals to the cytosolic E3 ligase parkin. Under basal conditions, PINK1 is imported to the mitochondria by TOM and TIM translocases, 
leading to the proteolytic cleavage of PINK1 by mitochondrial proteases. Upon stress, the IMM depolarizes and inhibits protein import. Uncleaved PINK1 
hence accumulates in the OMM and activates parkin through direct phosphorylation of the parkin Ub-like (UBL) domain or through the phosphorylation 
of ubiquitin. Activated parkin additionally ubiquitinates multiple substrates in the OMM to recruit autophagy receptors, including p62, optineurin (OPTN), 
and NDP52, which facilitate the recruitment of LC3 and engulfment of impaired mitochondria by autophagosomes. Ubiquitin-independent mitophagy is 
regulated by the recruitment of autophagy receptors, such as BNIP3, NIX, and FUNDC1, to the mitochondrial membrane. These receptor proteins then 
recruit LC3, enabling the engulfment of mitochondria by the autophagosomes.
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These findings suggest that mitochondrial fission and fusion criti-
cally contribute to aging when not properly balanced.

Mitochondrial fusion is essential for maintaining mtDNA stabil-
ity by diluting mtDNA mutations. Expansion of mtDNA mutations 
has been linked to age-associated mitochondrial decline in several 
species (see ‘mtDNA integrity in aging’). This notion was exten-
sively studied using proofreading-deficient POLG mutator mice. 
This mouse model was engineered to contain proofreading-defi-
cient mitochondrial DNA polymerase (POLG) through substitution 
of an alanine residue for aspartate on the POLG catalytic subunit 
(p.D257A), resulting in accumulation of mutated mtDNA and con-
sequently accelerated aging39,40. Interestingly, while the mutator 
mouse survives into adulthood, crossing this strain with knocked 
out Mfn1 results in mitochondrial dysfunction and embryonic 
lethality79. Of note, people with OPA1 mutations present mtDNA 
instability as indicated by multiple mtDNA deletions80,81. These 
findings suggest that mitochondrial fusion is essential for diluting 
mutated mtDNA. However, it cannot be ruled out that the effect 
of membrane dynamics on mtDNA propagation may have tissue 
and temporal specificity. Indeed, fragmentation of the mitochon-
dria is essential for removing mutant mtDNA in germline tissues of 
Drosophila, providing evidence for a fission-based selection against 
deleterious mtDNA mutations82, which seems opposite to the ben-
eficial effects of fusion in the C. elegans germline69.

Mitophagy. When mitochondrial stress accumulates to levels that 
exceed the capacity of stress responses, autophagy of the mito-
chondria, termed mitophagy, takes place. Among all mitochondrial 
quality-control systems, mitophagy is the only one that mediates the 
turnover of the whole organelle, thus avoiding cellular damage and 
apoptosis. In higher eukaryotes, mitophagy operates in different cell 
types and tissues through ubiquitin-dependent and ubiquitin-inde-
pendent pathways (Fig. 2b). The ubiquitin-dependent mechanism 
is mediated by the PINK1–parkin axis, which ubiquitinates multiple 
substrates to recruit autophagy receptors. Ubiquitin-independent 
mitophagy is regulated by direct recruitment of autophagy recep-
tors, such as BNIP3, NIX, and FUNDC1. Both pathways culminate 
in the engulfment of mitochondria by autophagosomes83.

There is accumulating evidence that mitophagy affects aging 
and the lifespan in different organisms84. In C. elegans, mitophagy is 
required for lifespan extension of several long-lived mutants, includ-
ing worms with reduced insulin–IGF-1 signaling or impaired mito-
chondrial function and mutants subjected to caloric restriction85. 
Furthermore, moderate mitochondrial deficiency and hypoxia 
response promote longevity in worms in a mitophagy-dependent 
manner86. In line with these results, deficiency in dct-1 and bec-1, 
both key autophagy genes, recapitulates the effect of aging on mito-
chondrial mass in young adult worms85. In Drosophila, parkin null 
mutants exhibit reduced lifespan and locomotor defects driven by 
muscle degeneration87, whereas parkin overexpression reduces pro-
teotoxicity and extends lifespan70. Consistent with these findings, 
the longevity effect of mitochondrial perturbation in flies involves 
systemic repression of insulin signaling, facilitating mitophagy by 
enhancing lysosome biogenesis34.

Mitophagy decline has been observed in several tissues in mice 
upon aging. In a transgenic mouse strain expressing the fluorescent 
mitophagy reporter mt-Keima, a decrease of ~70% in mitophagy was 
observed in the hippocampus of 21-month-old mice compared with 
that in young 3-month-old mice88. On a similar note, loss of parkin 
in POLG mutator mice causes a massive loss of dopaminergic neu-
rons by 1 year of age, suggesting that Parkin prevents neuronal dete-
rioration following mitochondrial mutagenesis89. Mitophagy also 
declines in the mouse heart upon aging, contributing to OXPHOS 
dysfunction and heart failure90. Moreover, defective mitophagy was 
observed in muscle-specific stem cells isolated from aged mice and 
humans91. This was associated with mitochondrial dysfunction and 

senescence, which can be restored by re-establishing mitophagy91. 
In accordance with these findings, boosting mitophagy improves 
OXPHOS function in aged worms and mice67,92 and in a muscular-
dystrophy mouse model, typified by accelerated muscle degrada-
tion93. Like in lower organisms, hypoxia also promotes mitophagy 
in mammals94, in which it has been shown to protect against mito-
chondrial toxicity and extend the lifespan in a genetic mouse model 
of mitochondrial disease95. Consistent with these results, hypoxic 
preconditioning attenuates ischemia and reperfusion injury through 
mitophagy in mice96. Mitophagy thus might represent a conserved 
strategy to maintain mitochondrial quality in hypoxic conditions.

A variety of mitophagy modulators have been shown to mitigate 
the effects of aging. Urolithin A (UA), a gut-microbiome-derived 
natural compound, induces mitophagy both in vitro and in vivo fol-
lowing oral administration in mice and humans92,97. In C. elegans, 
UA prevents the accumulation of dysfunctional mitochondria with 
age and extends lifespan92. These effects translate to rodents: UA 
improved muscle health in two mouse models of age-related muscle 
decline92 and a mouse model of muscular dystrophy, resulting in 
an increased survival rate93. Furthermore, UA treatment lowered 
protein aggregation and prevented cognitive impairment in animal 
models of Alzheimer’s disease98. The positive effects on mitochon-
drial health upon oral consumption of UA and its favorable safety 
profile97 have recently been documented in humans99. Other classes 
of compounds, such as actinonin, spermidine, and NAD+ enhanc-
ers, also exert their beneficial effects in models of aging and age-
related disease through the enhancement of mitophagy56,98,100–103.

Mitophagy in inflammaging. Defective mitophagy has emerged as 
a central contributor to inflammation, which may underlie the age-
dependent increase in low-grade inflammation, termed inflammag-
ing. Parkin-deficient mice challenged with immunogenic stressors, 
such as low-dose lipopolysaccharide (LPS), develop Parkinson’s-
disease-like symptoms, including loss of dopaminergic neurons 
and motor defects104. These phenotypes were also observed in aged 
Parkin–/– mutator mice105 and Pink1–/– mice infected with Gram-
negative bacteria106. Interestingly, PINK1 and parkin were shown 
to repress mitochondrial antigen presentation delivered by mito-
chondrial-derived vesicles, thus suppressing an immune response 
provoked by inflammation107.

Independently of pathogen infection, immune responses can 
be triggered by intracellular molecules from senescent or dying 
cells, termed damage-associated molecular patterns (DAMPs)108,109. 
mtDNA release is a potent DAMP, activating both intracellular 
and extracellular immune pathways. When released in the cytosol, 
mtDNA stimulates the NLRP3 inflammasome, resulting in IL-1β 
and IL-18 secretion and apoptosis. Additionally, cells can sense 
mtDNA in the cytosol through the cyclic GMP–AMP synthase 
(cGAS), which is activated by double-stranded DNA, leading to the 
production of 2′3′ cyclic GMP–AMP (cGAMP), a second messenger 
molecule and agonist of the stimulator of interferon genes (STING). 
Mitophagy can prevent inflammation by promoting mtDNA clear-
ance from damaged mitochondria, thus preventing cytosolic mtDNA 
release and subsequent STING1 activation105. Consistent with these 
data, mitophagy restrains inflammasome activation in macrophages 
by reducing cytosolic accumulation of mtDNA110,111. Furthermore, 
mitophagy flux is involved in the inflammatory responses mediated 
by IRGM1, a master regulator of type I interferon112, and can atten-
uate inflammation by directly restraining NLRP3-inflammasome 
overactivation in macrophages111. These findings support a role for 
mitophagy in restraining innate immune pathways. However, in 
acute inflammatory conditions, such as sepsis, mitophagy can exert 
opposite effects. For example, in a mouse model of sepsis caused by 
polymicrobial infection, pharmacological inhibition of mitophagy 
promotes macrophage activation favoring bactericidal clearance, 
leading to a higher survival rate113. Accordingly, mitochondrial 
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modulators that promote mitophagy led to immunoparalysis, a sec-
ondary immune suppression in sepsis, counteracting the removal of 
infectious agents and worsening survival113.

Circulating mtDNA increases gradually with age and correlates 
with serum inflammatory markers114, suggesting a causal role of 
extracellular mtDNA in age-related innate immune activation. One 
proposed explanation is that age-related failure of mitochondrial 
quality control could increase the release of mitochondrial-derived 
DAMPs; for instance, mitochondrial fusion seems to regulate TLR9-
mediated NF-κB activation in skeletal muscle of mice through 
mtDNA115. However, recent findings have challenged this notion, 
showing that a large portion of cell-free mtDNA in the blood is 
contained within whole mitochondria and does not circulate as 
naked DNA116. Additionally, cell-free mtDNA varies in response 
to common physiological stressors, such as exercise and psycho-
logical stress, suggesting that not all forms of cell-free mtDNA are 
pro-inflammatory117.

Integration of cross-compartment MSR pathways. The coor-
dination of several MSR pathways is critical for resolving cellular 
stress. This is exemplified by the fact that mitochondrial membrane 
dynamics and mitophagy occur in conditions of UPRmt activation. 
Both increased fission21,118,119 and fusion27 have been observed when 
UPRmt is activated. Whether fission or fusion occurs presumably 
depends on the type and strength of the inflicting stress, thus all 
contributing to the proteostatic capacity and protection against 
spreading of damaged macromolecules and organelles. Increased 
mitophagy has been detected in mammalian cells and flies overex-
pressing mutant forms of EndoG120 or OTC-Δ (refs. 118,119,121), and 
upon RNAi depletion of ND75 (ref. 34), which encodes an ETC com-
ponent, all conditions that strongly induce the UPRmt. Moreover, 
several autophagy genes are downstream targets of the master UPRmt 
regulator, ATFS-1, in C. elegans122. Cellular homeostasis under mito-
chondrial stress is hence maintained by the integrated coordination 
of MSR pathways. The UPRmt and presumably other interconnected 
protein stress responses act as the first line of defense against pro-
teotoxicity. When the stress level overcomes the capacity of mito-
chondrial proteostasis, mitochondrial membrane dynamics and 
mitophagy come into action to redistribute and remove irrevers-
ibly damaged elements of the mitochondrial network. Inability to 
induce or coordinate these MSR pathways contributes to OXPHOS 
dysfunction and the decline in whole-organism physiology.

It is now evident that perturbations in the mitochondria can 
lead to broad cellular adaptations integrating cytosolic proteos-
tatic responses, as shown by the recently identified mitochondrial 
to cytosolic stress pathways in yeast and worms123–128. These path-
ways restore cytosolic proteostasis by decreasing protein synthesis 
and/or increasing protein folding and degradation, highlighting the 
existence of an integrated, rather than a compartment-specific, pro-
teostatic adaptation to mitochondrial stress. This view is supported 
by the integrated stress response (ISR) in mammals9. Several mito-
chondrial insults trigger the ISR, which induces a global response to 
restore cellular homeostasis by attenuating cytosolic translation and 
expression of cytoprotective genes. The ISR interconnects several 
proteostasis pathways, such as the UPR in the endoplasmic reticu-
lum and the UPRmt, by shared signaling effectors, including eIF2α 
and ATF4 (refs. 9,129). Consistent with a functional link of mitochon-
drial to cytosolic proteostasis, pharmacological or genetic ablation 
of mitochondrial ribosomes attenuates cytosolic translation in 
worms and mammalian models9,25, induces UPRmt,, and promotes 
health- and lifespan extension in several organisms21–23 (Fig. 3a).  
Lipid signaling might have a coordinating role in these cross-
modal stress pathways. Silencing of carnitine palmitoyltransferase 
(CPT) or mitochondrial chaperone mtHSP70 (hsp-6 in C. elegans) 
in worms triggers both the UPRmt and the heat shock response 
(HSR), resulting in a chaperone-mediated reduction in cytosolic  

proteotoxicity123. The underlying mechanism of this adaptation 
involves attenuation of ceramide biosynthesis123 (Fig. 3b). In line 
with these observations, pharmacological ceramide depletion by 
myriocin, a high-affinity inhibitor of the ceramide de novo bio-
synthesis pathway, promotes lifespan extension in yeast130 and 
C. elegans131. This seems to involve global proteostasis remodel-
ing through translation attenuation and improved mitochon-
drial homeostasis132, common signatures of lifespan extension. By 
studying how yeast cells eliminate protein aggregates in the cyto-
sol, another cross-compartment proteostasis pathway was recently 
revealed, wherein mitochondria can import and degrade misfolded 
cytosolic proteins, a phenomenon termed mitochondria as a guard-
ian in cytosol (MAGIC)133. Further studies are needed to determine 
to what extent these pathways are conserved in vertebrates. One 
recent study, suggesting that this is indeed the case, has found that 
fine-tuning of mitochondrial and cytosolic translation is required 
for sustained killing of virally infected cells by cytotoxic T cells134.

From all this, it becomes clear that mitochondria use MSR 
pathways to adapt themselves and the cellular milieu to stressful 
situations. Thus, impairment in these MSR pathways contributes 
to mitochondrial dysfunction and organismal aging. Conversely, 
depending on the type and intensity of the stress, the MSR can lead 
to beneficial cellular adaptations. This finely controlled mecha-
nism, termed mitohormesis, is proposed to protect organisms from 
a decline in mitochondrial function that commonly occurs during 
aging and to extend the lifespan across species (Fig. 3c).

mtDNA integrity in aging
mtDNA encodes only 13 OXPHOS proteins in mammals, yet it 
is essential for mitochondrial homeostasis. Unlike the nuclear 
genome, the mtDNA is replicated continuously and independently 
of the cell cycle. Given the inefficient mtDNA repair system, it 
will inevitably lead to the introduction of base errors over time. 
Thus, mtDNA of somatic cells is prone to accumulate mutations 
throughout the lifetime of an organism, which progressively leads 
to increasing levels of heteroplasmy, that is, the coexistence of intact 
and mutant mtDNA copies in the same cell. Above a certain thresh-
old, heteroplasmy of mtDNA mutations translates into detrimental 
physiological consequences driving aging and disease135,136, includ-
ing impairments to glucose metabolism and cognition137 and lifes-
pan shortening138, in mice.

When mtDNA mutations occur in germline cells, they can be 
maternally transmitted as polymorphisms to the next generation, 
conferring sequence variability within species and allowing their 
subgroup classification as haplotypes. During evolution, mtDNA 
lineages, or haplogroups, emerged from the segregation of these 
different mtDNA sequences due to migration flow. Although 
enrichment of certain haplotypes might have helped our ancestors 
to adapt their physiology to different environmental conditions139, 
meta-analysis studies have reported the association of some hap-
lotypes with several pathological conditions, such as Alzheimer’s 
disease140, multiple sclerosis141, and type 2 diabetes142. Conversely, 
other haplotypes have been associated with physiological benefits, 
including increased longevity in Haplogroup D among the Japanese 
population143 and in Haplogroup J among the European popula-
tion144, although other factors, such as environment and ethnic 
background, could also explain this phenotype145.

Cytoplasmic hybrid (cybrid) cell lines and conplastic organismal 
models carrying different mtDNA variants under the same nuclear 
background have been extensively used to study the cellular and 
physiological impact of mtDNA–nDNA (in)compatibility, over-
coming some limitations in association studies. In flies, mitonuclear 
matching has been shown to modulate lifespan146, and these epi-
static interactions are further modified by diet147. Moreover, mito-
nuclear mismatch can have detrimental effects on mitochondrial 
metabolism and ROS metabolism during Drosophila aging148 and 
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can affect their fitness149. Interestingly, a study using cybrid mouse 
cell lines engineered to contain different mtDNA haplotypes in an 
identical nuclear background showed that strain-specific mtDNA 
variants, such as NZB mtDNA, lead to increased ROS levels, which 
act as a signal for mitochondrial biogenesis150. It was later observed 
that conplastic mice with NZB mtDNA on the C57BL/6 nuclear 
background present tissue-specific reorganization of mitochondrial 
supercomplexes, improved ETC capacity, and improved overall 
energy metabolism, resulting in healthspan and lifespan exten-
sion151 (Fig. 4a). Like in the cybrid cells, this phenotype seems to 
involve a mitohormetic response, as these conplastic mice show 
a mild increase in ROS levels151, which presumably primed these 
beneficial adaptations. As described, a mismatch between mtDNA 
and nDNA can have profound consequences in physiology, which 
may also underpin the multivariable pathological characteristics 
of germline-transmitted mtDNA mutations. Owing to this haploid 
nature of mtDNA, high mutation rates in the mtDNA are counter-
acted by conserved selective mechanisms, such as bottleneck effects 
and purifying selection, to attenuate the transmission of deleteri-
ous levels of mutated mtDNA152–155. It has recently been shown that 
cells with defective mitochondria can be selectively eliminated by 
cell competition during early development in mice as another step 
of purifying selection156. Despite these protective mechanisms, het-
eroplasmy is often inherited, is shaped by selective forces under 
nuclear control in the mammalian germline157, and can affect aging. 
Supporting this notion, another conplastic mouse strain harbor-
ing AKR/J mtDNA under a C57BL/6 nuclear background demon-
strates impairment in multiple metabolic pathways, resulting in a 
shorter lifespan than that of wild-type C57BL/6 mice with low levels 
of heteroplasmy138. Furthermore, mtDNA mutations in the mater-
nal germline can be transmitted to mice with a wild-type nDNA 

background and shorten their lifespan158,159. These findings indi-
cate that the rate of aging may be set early in life, with germline-
transmitted mtDNA mutations potentially having profound lifelong 
consequences. With the advance of mitochondrial gene-editing 
techniques160, the precise manipulation of mtDNA variants may 
uncover how mutations in the germline affect aging and longevity.

The frequency of mtDNA mutations, be they point mutations 
or large-scale deletions, increases with age in humans and ani-
mal models161–165 (Fig. 4b). Deletions of mtDNA are characterized 
by the loss of single or multiple portions of the mitochondrial 
genome, which can cause both multisystemic and tissue-specific 
diseases42,166 Currently, it is not firmly defined whether these muta-
tions are causal or correlative with aging, but strong indications 
suggest that they can contribute to OXPHOS dysfunction and 
some aging phenotypes167,168. This hypothesis originated from 
analysis of the different ‘mutator’ mouse strains39,40. The homozy-
gous mice accumulate both point mutations and deletions in the 
mtDNA associated with reduced lifespan and accelerated aging, as 
manifested by sarcopenia, cardiomyopathy, loss of bone mass, and 
thymic involution39,40,169,170. Notably, over 300 human diseases are 
associated with POLG mutations, many of which manifest symp-
toms of age-related diseases171.

Conversely, although homozygous Polgmut/mut mice age prema-
turely, heterozygous Polgmut/+ mice seem to age normally regard-
less of their 500-fold higher mtDNA mutation load, suggesting 
that mtDNA mutation load does not define lifespan, at least up to 
a certain level172. This might also be true for large mtDNA dele-
tions, as twinkle transgenic mice with multiple large mtDNA dele-
tions do not show a reduction in the lifespan or a premature-aging 
phenotype173. These studies hence suggest that heteroplasmy must 
reach a certain level, known as the biochemical threshold174, to 
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affect OXPHOS and organismal aging. Yet, in human tissues such 
as skeletal muscle, mtDNA mutations rarely reach this threshold, 
probably because these deletions form and clonally expand within 
individual muscle fibers, underlying heterogeneity across the tissue. 
Focal regions adjacent to myonuclei seem to be hotspots where the 
heteroplasmy originates before spreading across the muscle fiber175, 
providing evidence for a cell-specific local proliferative advantage of 
mutant mtDNA. These cell-specific defects could then trigger cell-
nonautonomous signaling events, contributing indirectly to organ-
ismal aging.

The underlying mechanisms that govern heteroplasmy in 
somatic cells are largely unknown. However, it has been proposed 
that mutant genomes have a selective advantage over non-mutant 
ones, resulting in their accumulation176. For unknown reasons, the 

induction of the UPRmt in C. elegans seems to accelerate the accu-
mulation of mutated mtDNA copies over intact ones48,177. In hetero-
plasmic worms, the UPRmt regulator ATFS-1 binds preferentially 
to mutated mtDNA and promotes the binding of POLG through 
a mechanism involving the mitochondrial protease LONP-1, sug-
gesting that ATFS-1 stability is a key process in the maintenance 
of heteroplasmy178. Conversely, mitochondrial fusion and mitoph-
agy are essential for maintaining mtDNA integrity by diluting and 
eliminating mutated mtDNA, respectively79,80,179,180 (Fig. 4b). Finally, 
mtDNA release is also a potent DAMP, activating both intracellular 
and extracellular immune pathways that could affect heteroplasmy 
(Fig. 4c). Thus a decline in MSR fitness can affect the age-related 
expansion of mtDNA mutations which may also have tissue181,182 
and cellular specificity182,183.
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Mitochondrial metabolites and aging
Nicotinamide adenine dinucleotide. NAD+ is a cofactor involved 
in multiple metabolic reactions. It also serves as a substrate for many 
NAD+-consuming enzymes, such as the poly-ADP-ribose poly-
merase (PARP), the cyclic ADP-ribose synthase CD38, SARM1, 
and sirtuins, a family of seven protein deacylases localized in the 
nucleus (SIRT1, SIRT6, and SIRT7), cytosol (SIRT2), and mito-
chondria (SIRT3–SIRT5). Decline in NAD+ levels impairs the activ-
ity of sirtuins, which are important modulators of mitochondrial 
homeostasis and aging184–187.

In multiple model organisms, NAD+ levels decline upon 
aging27,188, presumably due to reduced expression of nicotinamide 
phosphoribosyl (NAMPT), the rate-limiting enzyme for NAD+ 
synthesis189, or by increased expression and activity of NAD+-
consuming enzymes, such as PARP27 and CD38 (refs. 190–192). In line 
with this view, the age-dependent decline in NAD+, which com-
promises mitochondrial homeostasis, can be recovered through 
administration of NAD+ precursors or PARP inhibition in C. ele-
gans and mice27,188. Moreover, restoration of NAD+ levels with NR 
supplementation enhances lifespan in mice and improves mito-
chondrial and stem cell function28. These observations corroborate 
the protection from OXPHOS defects in mice with genetic or phar-
macological ablation of PARP activity193,194, or mice treated with 
NMN195 or NR196. Deletor mice containing a mutation in Twinkle, 
which encodes a mitochondrial replicative helicase, display reduced 
levels of NAD+, mitochondrial impairment, and progressive muscle 
myopathy; treatment with NR slows early and late-stage disease 
progression by restoring mitochondrial function197. In agreement, 
both NR administration and PARP inhibition improve ETC func-
tion and exercise intolerance in Sco2-knock out/knock in mice, 
another model of mitochondrial disease198. Moreover, in mouse 
models of ataxia telangiectasia, an autosomal disorder characterized 
by progressive neurodegeneration and cerebellar ataxia, increasing 
NAD+ levels delays the accelerated-aging phenotype, including 
MSR decline, and extends the lifespan103. Similarly, PARP inhibi-
tion or NAD+ supplementation rescues mitochondrial dysfunction 
and premature aging in a mouse model of Cockayne syndrome199 
and restores mitochondrial abnormalities in xeroderma pigmento-
sum group A (XPA)-deficient cells and worms, which prevents the 
attenuation in lifespan200. NAD+ depletion is also observed in people 
with Werner syndrome and invertebrate models of the disease, a 
human premature aging disease caused by mutations in the Werner 
DNA helicase gene102. Restoring NAD+ in C. elegans and Drosophila 
Werner syndrome models delays the accelerated-aging phenotype, 
including stem cell dysfunction, and extends the lifespan102. These 
findings suggest that boosting NAD+ levels prevents mitochondrial 
dysfunction in not only aging, but also rare genetically determined 
mitochondrial diseases and DNA-repair disorders known to accel-
erate the aging process.

Additional findings have demonstrated the importance of 
NAD+ in the immune system. Increasing NAD+ levels can benefit 
several inflammatory conditions in mouse models of aging28,188, 
ataxia-telangiectasia autoimmunity103, and muscular dystrophy51. 
In older humans, NR administration for only 21 days was suffi-
cient to reduce circulating inflammatory cytokines201. However, it 
is unclear whether this anti-inflammatory effect is secondary to the 
physiological benefits of NAD+ or perhaps is more probably caused 
by direct programming of immune cells. NAD+ levels decline in 
immune cells upon aging, and boosting NAD+ levels restores the 
age-related decrease in OXPHOS and immune function in macro-
phages from older humans and mice202. Interestingly, pro-inflam-
matory M1-like, but not naive or M2, macrophages express high 
levels of the NAD-consuming enzyme CD38, induced by cytokines 
released from senescent cells190,191. These M1-like macrophages 
accumulate in tissues such as visceral white adipose tissue and 
liver during aging, thereby reducing global tissue NAD+ levels191,  

suggesting that senescent cells promote tissue NAD+ reduction via 
activation of macrophages.

Collectively, these findings suggest that a decrease in systemic 
NAD+ levels is a crucial driver of organismal decline in aging. This 
is further supported by the overarching therapeutic effect of NAD+ 
boosters in several animal models of common age-related condi-
tions, ranging from diabetes and obesity195,196, non-alcoholic fatty 
liver disease203, kidney injury204–206, impaired muscle function and 
sarcopenia51,188,196, glaucoma207, ischemia–reperfusion injury208,209, 
vascular dysfunction210, to cognitive decline56,103,211,212. Taken 
together, the health benefits and the prevention of age-associated 
MSR and OXPHOS decline support the use of NAD+ boosters as 
therapy for some of these age-related diseases. The efficacy of NAD 
replenishment was recently illustrated in the setting of human acute 
kidney injury206 and COVID-19 (ref. 213).

Tricarboxylic acid cycle intermediates. Tricarboxylic acid cycle 
(TCA) metabolites are by-products of energy metabolism with 
essential roles in cellular homeostasis, fueling anabolic reactions 
and adjusting metabolic pathways through signaling cascades or 
allosteric modulation of key enzymes. There is increasing evidence 
that TCA metabolites are essential mediators of cellular signaling 
by their actions in chromatin modifications, DNA methylation, 
and post-translational protein modifications214. For instance, citrate 
leads to the cytosolic production of acetyl-CoA that fuels histone 
and protein acetylation through acetyltransferases215,216, thus modu-
lating gene expression217–220. In this regard, impaired mitochon-
drial metabolism affects epigenetics by restricting the production 
of TCA intermediates. Indeed, genetic ablation of the ETC impairs 
histone acetylation, which can be restored by reconstitution of TCA  
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function in human cells221. Moreover, DNA- and histone-meth-
ylation status are both regulated by 2-oxoglutarate-dependent 
dioxygenases (2-OGDO), such as ten-eleven translocation (TET) 
hydroxylases and histone demethylases that use α-ketoglutarate 
(α-KG) and oxygen as co-substrates for oxidation of target mol-
ecules214. Succinate and fumarate are potent inhibitors of these 
2-OGDO enzymes222, underscoring the tight control of the chroma-
tin epigenetic landscape by the TCA.

Changes in nutritional pathways and epigenetic state are cru-
cial to aging and are affected by TCA metabolites. In C. elegans 
and Drosophila, administration of α-KG extends lifespan through 
a mechanism involving the inhibition of the target of rapamycin 
(TOR)223,224. Fumarate and malate, when administered to worms, 
extend lifespan, which is associated with the induction of the glyox-
ylate shunt, an extra-mitochondrial pathway of energy production, 
mild mitochondrial uncoupling, and expression of the longevity 
regulators DAF-16 and SIR-2.1 (refs. 225,226). Conversely, the accu-
mulation of succinate causes an opposite effect in worms and flies: 
succinate dehydrogenase (SDH) mutants display increased ROS lev-
els and accelerated aging227,228. Acetyl-CoA seems to be an essential 
mitochondrial signal regulating the rate of aging in C. elegans. Upon 
mitochondrial stress early in life, levels of acetyl-CoA decrease, 
resulting in the nuclear accumulation of the histone deacetylase 
complex (NuRD), allowing epigenetic and transcriptional remodel-
ing for lifespan extension in worms229.

α-KG levels decline upon mammalian aging230,231 and corre-
late with alterations in the epigenetic landscape in several tissues, 
such as the brain232, adipose tissue231, and bones233. Not surpris-
ingly, replenishment of α-KG levels attenuates several age-related 
disorders. Increasing the levels of α-KG ameliorates age-related 

osteoporosis in aged mice by reducing accumulation of histone H3 
trimethylated at K9 and H3 trimethylated at K27 at the promoters 
of the osteogenesis-related genes Bmp2, Bmp4, and Nanog, improv-
ing bone marrow mesenchymal stromal and stem cell function233. 
Moreover, restoration of α-KG in middle-aged mice increases DNA 
demethylation at the promoter of the transcriptional regulator of 
brown adipocytes Prdm16, which induces brown adipocyte genes 
and prevents age-associated obesity231. Increasing α-KG levels fur-
thermore restores age-related redox alterations234, reduces inflam-
mation235, delays fertility decline236, and extends the lifespan235 in 
mice (as in flies and worms—see above), suggesting that α-KG is 
a potent signaling metabolic intermediate involved in mamma-
lian aging, presumably by epigenetic modulation. Also, an elevated 
α-KG:succinate ratio is involved in the maintenance and differen-
tiation of pluripotency of embryonic stem cells237,238 and modulates 
the differentiation of germ cells239 by DNA and histone demethyl-
ation. Similar to what happens in C. elegans, accumulation of suc-
cinate by reduced SDH activity in mammals, as observed during 
aging240,241, can counteract the epigenetic actions of α-KG by inhib-
iting 2-OGDO demethylases237,238, thus contributing to age-related 
epigenetic alterations232 and diseases. Fumarate has recently been 
shown to act as a terminal electron acceptor in the mammalian ETC 
under conditions of hypoxia, yet its connection with aging remains 
to be established in mammals242.

Conclusion and perspectives
Work over recent years has uncovered the impressive ability of the 
mitochondria to maintain homeostasis in a variety of stressful situ-
ations. The importance of this adaptive response is underlined by 
our increasing understanding of how defects in these mitochon-
drial responses are intimately associated with aging. Mitochondria 
have a pleiotropic effect on aging, which can comprise protective or 
maladaptive responses. The nature of their response will depend on 
how mitochondria can sustain their MSR pathways within the ever-
changing cellular milieu that is exposing them constantly to various 
levels of stress (Fig. 5). In recent years, we have gained considerable 
insight into how age-related processes are intimately wired to differ-
ent types of MSR. Still, the functional interactions of these pathways 
and their implication in aging remain largely unexplored (Box 2). 
Identifying shared molecular signals of stress responses will be cru-
cial to shed light on how MSR dysfunction contributes to proteostasis 
collapse during the aging process243. For instance, NAD+ gradually 
declines during aging and seems to integrate many of these stress 
responses. Other signaling molecules, such as bioactive lipids and 
mitochondrial metabolites, may warrant more attention, as they also 
seem to have a role in cross-compartment stress communication. On 
the same note, mitochondrial DNA has evolved as a critical signal-
ing factor in cellular homeostasis. Given some unique features of 
mitochondria, such as their haploid inheritance, constant replication 
rates, and inefficient DNA-repair system, mtDNA is prone to accu-
mulating mutations throughout life, leading to a progressive increase 
in heteroplasmy. Moreover, the rate of aging may be set early in life by 
germline-transmitted mtDNA mutations. Yet, the underlying mech-
anisms in mammals are poorly known. Future studies should focus 
on the involvement of MSR in regulating the clonal expansion of 
both somatic and inherited mtDNA mutations, as observed in model 
organisms69,82. Under these circumstances, how damaged mitochon-
dria or components of the mitochondria, including mtDNA, are 
released during aging and whether this signals cellular and systemic 
inflammation are important questions that should be addressed. 
Hopefully, unveiling the pleiotropic effects of mitochondrial dys-
function will allow us to better understand fundamental aspects of 
how mitochondria have a commanding role in the aging clock.
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Box 2 | Key questions on the pleiotropic effects of 
mitochondria in aging

Although the link between mitochondrial homeostasis and ag-
ing is well established, several important questions need to be 
answered to allow a clear mechanistic level to the understanding 
of this connection.

•	 What are the molecular mechanisms underlying the cross-
modal effect of the MSR on stress in other cellular compart-
ments? Are there common signaling effectors that could 
explain their co-decline in aging?

•	 How does aging affect mitochondrial communication with 
other cellular compartments and organelles?

•	 What MCSRs are conserved in mammalian aging? What are 
the signaling molecules involved in these responses?

•	 How do mutations in mitochondrial DNA in the germline 
shape aging and longevity? What are the underlying mecha-
nisms that govern heteroplasmy in somatic cells? Is there tis-
sue and cellular specificity?

•	 How is mtDNA released in the cytosol and in the circulation 
during aging, and how does it signal?

•	 We should also understand better age-related differences in 
mitochondrial function at the subcellular, cellular, tissular, 
and organismal levels. A better definition and characteriza-
tion of the various mitokines or metabokines is required.

•	 Can we design strategies that safely prevent or revert age-
induced changes in mitochondrial metabolites that mediate 
aging pathways?

•	 How can we harness mitohormesis to improve healthspan 
and increase longevity? What is the safe threshold to induce 
mild mitochondrial stress in aging, and at what stage of the 
lifespan?
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